

Efficacia, sicurezza e tollerabilità dei MAbs

MAbs anti CGRP nel trattamento dell'emicrania Prof. Filippo Baldacci, UO Neurologia AOUP

#ForumRisk19

DISCLOSURES

	Expenses	Consultant	Funded research
Abbvie	X	X	X
Ely Lilly	X	X	
Teva	X		

OBJECTIVEs

- STRUCTURAL CHARACTERISTICS OF ANTI-CGRP MONOCLONAL ANTIBODIES
- CGRP GENE AND CLASSIFICATION OF CGRP RECEPTORS
- CGRP IN THE PATHOPHYSIOLOGY OF MIGRAINE
- DIFFERENCES IN MECHANISMS OF ACTION AND RESISTENCE AMONG THE ANTI-CGRP MONOCLONAL ANTIBODIES
- EFFICACYAND EFFECTIVENESS
- DISEASES AND CONDITIONS POTENTIALLY RELATED TO CGRP BLOCK
- CONCLUSIONS AND OPEN QUESTIONS

NOVEL TARGET THERAPY IN MIGRAINE

PREVENTIVE TREATMENT

Two classes of CGRP inhibitors — monoclonal antibodies and small molecule antagonists (gepants)

- Four monoclonal antibodies (Eptinezumab, Erenumab, Fremanezumab, Galcanezumab) largerly used in episodic and chronic migraine, with long post-trial follow-up and real life experience
- Two gepants (atogepant and rimegepant)

ACUTE TREATMENT

One class of CGRP inhibitors (gepants) and one class of selective 5HT1F agonist (Ditans)

- Three gepants (ubrogepant, rimegepant and zavegepant)
- One Ditan (Lasmiditan)

CGRP Inhibition – Anticorpi anti CGRP

Monoclonal antibodies	Erenumab	Galcanezumab	Fremanezumab	Eptinezumab
Target	CGRP receptor	CGRP ligand	CGRP ligand	CGRP ligand
lgG type	lgG2, human	IgG4, humanized	lgG2a, humanized	lgG1, humanized
Administration	Monthly SC	Monthly SC	Monthly or quarterly SC	Quarterly IV
Doses approved for migraine prevention (EM, CM)	70 mg or 140 mg	120 mg (240 mg loading dose)	225 mg monthly or 675 mg quarterly	100 mg or 300 mg
Other headache disorders (approved or under inves- tigation)	cCH, PTH	eCH (approved 300 mg monthly), cCH (no primary endpoint met)	eCH and cCH (primary endpoint unlikely to be met), PTH	eCH, cCH

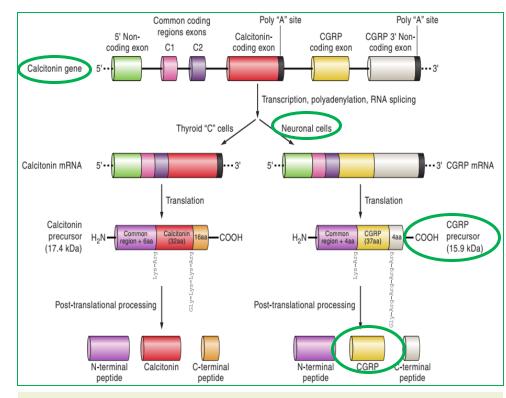
Abbreviations: cCH Chronic cluster headache, eCH Episodic cluster headache, IV Intravenous, SC Subcutaneous injection, PTH Acute post-traumatic headache

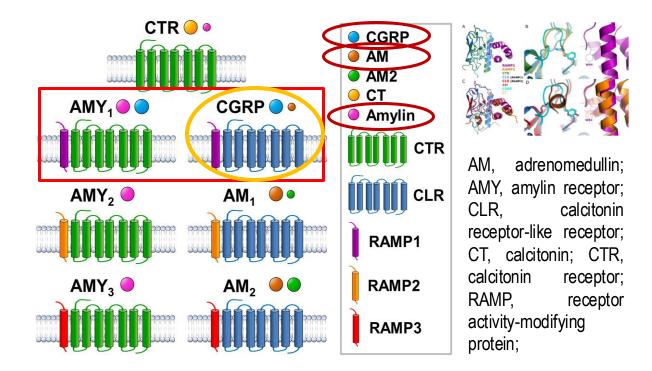
Generic drug name	Indication	Dosage and administration	T _{max}	<i>t</i> _{1/2}
mAb targeting the CGR	P receptor			
Erenumab	• Preventive treatment of migraine in adults	70 or 140 mg monthly single dose s.c. injection	4–6 days ^a	28 days
mAbs targeting the CG	RP ligand			
Eptinezumab	• Preventive treatment of migraine in adults	100 or 300 mg i.v. infusion over 30 min every 3 months	End of infusion	~27 days
Fremanezumab	• Preventive treatment of migraine in adults	225 mg monthly, or 675 mg every 3 months s.c. injection	5–7 days ^a	~31 days
Galcanezumab	Preventive treatment of migraine, andTreatment of episodic cluster headache	240 mg s.c. injection loading dose, followed by monthly doses of 120 mg	5 days ^a	27 days

	Gepants	Anti-CGRP monoclonal antibodies
Target	CGRP receptor	CGRP receptor or ligand
Clearance	Liver, kidney	Reticuloendothelial system
Half-life	5–11 h	3–7 weeks
Size	0.5-0.6 kDa	143–146 kDa
Ability to cross blood– brain barrier	Low (1.4% CSF/plasma ratio)	No
Administration	Oral, intranasal	Parenteral
Immunogenicity	No	Yes

#ForumRisk19

Boinpally R Clin Transl Sci 2024


Linda Al-Hassany Lancet Neurol 2022


www.forumriskmanagement.it

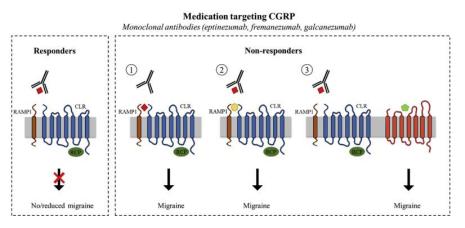
CGRP GENE AND CLASSIFICATION FOR THE HUMAN CT RECEPTOR FAMILY

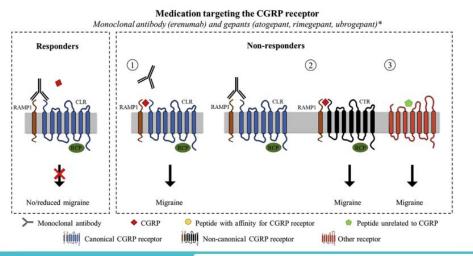
CGRP is a peptide of 37 amino acids in 2 isoforms (**\alpha-CGRP** e β -CGRP) that differ for 3 aminoacids and are trascripted from 2 genes - **CALC1 (CALCA)** and CALC2 (CALCB), both on chromosome 11

Agents that **block both CLR/RAMP1 and CTR/RAMP1** can <u>fully antagonize</u> the effects of CGRP in vivo

#ForumRisk19

Edvinsson Nat Rev Neurol 2018


Russell Physiol Rev 2014


2018 Hay British Journal of Pharmacology 2018 Walker British Journal of Pharmacology 2013 Ray JNNP 2021

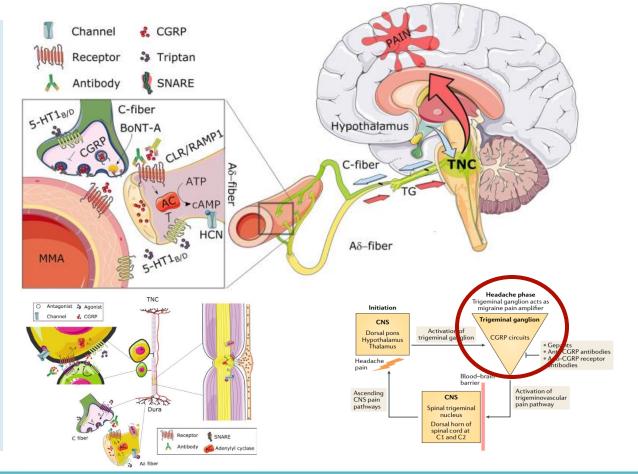
RESPONDERS AND NON TO ANTIBODIES TARGETING CGRP OR ITS RECEPTOR

#ForumRisk19

In responders to <u>medications targeting CGRP</u> (eptinezumab, fremanezumab and galcanezumab), CGRP is sufficiently blocked, leading to a reduction in migraine.

In non-responders, multiple situations are possible 1) **Blocking of CGRP is insufficient**. 2) Blocking of CGRP is sufficient, but **other peptides** (e.g. adrenomedullin) **can activate the CGRP receptor**. 3) Blocking of CGRP is sufficient, but migraine is induced **via a different pathway**.

In responders to <u>medications targeting the CGRP receptor</u> (erenumab *or the gepants; atogepant, rimegepant, ubrogepant, zavegepant*), the receptor is sufficiently blocked. In non-responders. 1) Blocking of the CGRP receptor is insufficient. 2) Blocking of the CGRP receptor is sufficient but CGRP can activate related receptors (e.g. AMY1 receptor). 3) Migraine is induced via a different pathway



De Vries T Pharmacology & Therapeutics 2020

MIGRAINE PATHOPHYSIOLOGY AND POTENTIAL MECHANISMS OF SPECIFIC TREATMENTS

- The migraine attack is initiated with premonitory symptoms and activation of the <u>hypothalamus</u>.
- The <u>trigeminus nucleus caudalis (TNC)</u> is activated. This leads to activation of the trigeminal ganglion (TG), and CGRP release (C-fibers).
- The CGRP release at the middle meningeal artery (MMA), leads to vasodilation.
 CGRP activates CLR/RAMP1 (CGRP receptor) on the Aδ-fiber.
- The CGRP receptor activates adenylate cyclase (AC), increasing intracellular cyclic adenosine monophosphate (cAMP). This leads to a hyper-excitability and a hypothesized activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels.
- cAMP increases the open-probability giving an action potential from the Aδ-fiber, which travels back to the TNC and is further sensed as pain. <u>Sensitization of Aδ-fibers</u> might, in addition, lead to normal stimuli, such as touch, being sensed as pain.

G 🗶 🖸 🕩

www.forumriskmanagement.it

#ForumRisk19

Edvinsson Nature Rev Neurol 2018

Edvinsson Trends In Pharmacological Sciences 2021

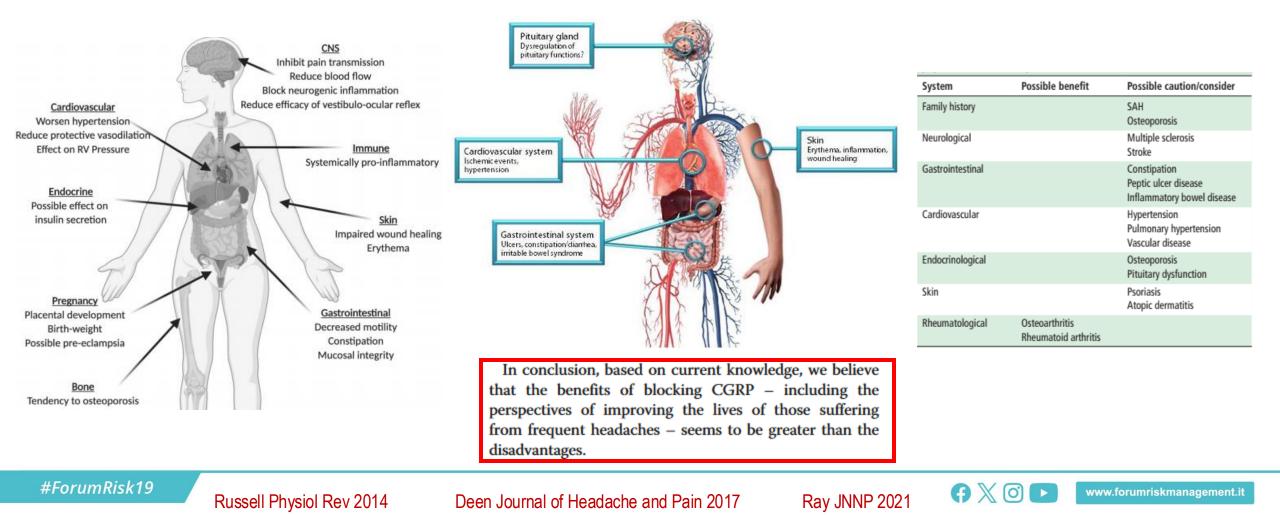
PHASE 3 RANDOMISED CONTROLLED CLINICAL TRIALS

		Inclusion criteria	Randomised patients	Treatments	MMD reduction	Fifty-percent responders	1° endpoint follow-up
Erenumab (Ere)	STRIVE	Episodic migraine	955	Ere 70mg, Ere 140mg, Placebo	-3.2 -3.7 -1.8	43.3% 50.0% 26.6%	3 months
	LIBERTY	Episodic migraine, (2-4 failed prophylaxes)	246	Ere 140mg, Placebo	-1.8 -0.2	30% 17%	3 months
	ARISE	Episodic migraine	577	Ere 70mg, Placebo	-2.9 -1.8	39.7% 29.5%	3 months
Galcanezumab (Gal.)	EVOLVE-1	Episodic migraine	862	Gal 120mg, Gal 140mg, Placebo	-4.7 -4.6 -2.8	62.3% 60.9% 38.6%	6 months
	EVOLVE-2	Episodic migraine	922	Gal 120mg, Gal 140mg, Placebo	-4.3 -4.2 -2.3	59.3% 56.5% 36%	6 months
	REGAIN	Chronic migraine with or without MOH	1113	Gal 120mg (loading dose), Gal 140mg, Placebo	-4.8 -4.6 -2.7	27.6% 27.5% 15.4%	3 months
Framanezumab (Fre)	HALO - EM	Episodic migraine	875	Fre 225mg monthly, Fre 675mg quarterly, Placebo	-4.6 -4.3 -2.5	41% 38% 18%	3 months
	HALO - CM	Chronic migraine with or without MOH	1136	Fre 675mg at baseline + 225mg monthly, Fre 675mg quarterly, Placebo	-3.4 -3.7 -2.2	44.4% 47.7% 27.9%	3 months
Eptinezumab (Ept)	PROMISE-1	Episodic Migraine	898	Ept 100mg, Ept 300mg, Placebo	-3.9 -4.3 -3.2	49.8% 56.3% 16.2%	3 months
	PROMISE-2	Chronic Migraine with or without MOH	1121	Ept 100mg, Ept 300mg, Placebo	-7.7 -8.2 -5.6	57.6% 61.4% 39.3%	3 months

#ForumRisk19

Mascarella D, Neurol Sci 2022

REAL-WORLD PROSPECTIVE STUDIES


	Patients included		Mean Previous Failed Prophylaxes	Anti-CGRP mAb	MMD reduction	Fifty-percent responders	Follow-up		
	Total	Episodic migraine	Chronic migraine	Medication overuse headache					
Barbanti et al. (EARLY)	372	103 (27%)	269 (72%)	268 (72%)	3.5 in EM 5.4 in CM	Erenumab	-4.5 in EM -9.3 in CM	59.4% in EM 55.5% in CM	3 months
Barbanti et al. (EARLY-2)	242	57 (23%)	164 (67%)	133 (54%)		Erenumab	-4.4 in EM -12.8 in CM	56% in EM 75% in CM	48 weeks
Belvis et al. (MAB-MIG)	210	10.5%	89.5%	70%	7.8	Erenumab	-8.6	37% responder rate	3 months
Caronna et al.	139	0	139 (100%)	99 (71%)	>3	Erenumab Galcan- ezumab	-8.3 in CM -10.3 in MOH	57.5% in CM 63.6% in MOH	6 months
Cheng et al.	170	0	179 (100%)	85 (50%)	5–9 in 68%	Erenumab	-8.5 at 3 months -9.2 at 6 months	58.8% at 3 months 46.5% at 6 months	3 and 6 months
De Vries Lentsch et al.	100	54 (54%)	46 (46%)	0	5	Erenumab	-4.8	22-43%	6 months
Lambru et al.	162	0	162 (100%)	84 (51%)	8.4	Erenumab	-6.0 at 3 months -7.5 at 6 months	35% at 3 months 38%. at 6 months	3 and 6 months
Pensato et al.	149	0	149 (100%)	149 (100%)	7	Erenumab	-11.3	51%	3 months
Schoenen et al.	156	80 (51%)	76 (49%)	50 (32%)	>2 in 74%	Erenumab	-4.2 in EM -7.8 in CM	55% in EM 43% in CM	3 months
Torres Ferrus et al.	155	20	135	97	>4 in 89%	Erenumab Galcan- ezumab	-9.1	51.6%	3 months
Vernieri et al. (GARLIT)	163	33	130	117	4 in EM 5 in CM	Galcanezumab	-8 in EM -13 in CM	76.5% in EM 66.7% in CM	6 months

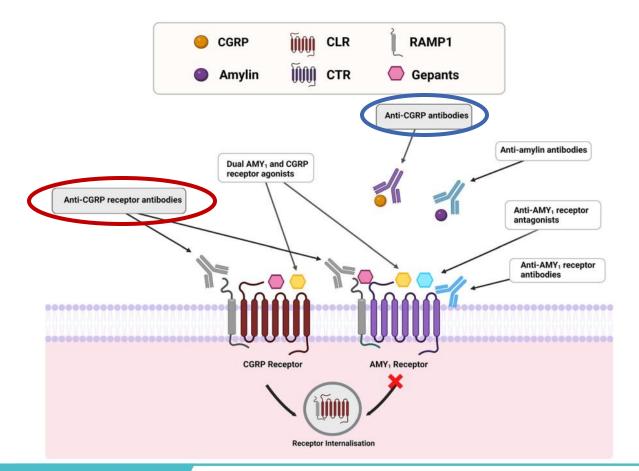
DISEASES AND CONDITIONS POTENTIALLY RELATED TO CGRP BLOCK

CONCLUSION AND OPEN QUESTIONS

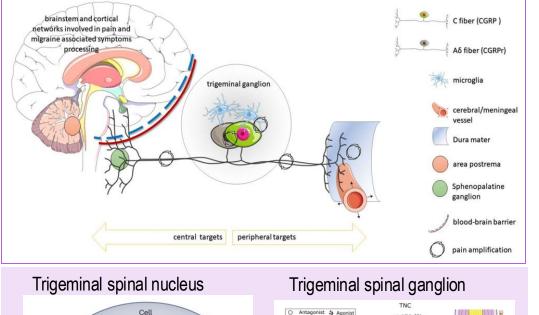
- Main peripheral action of Ab anti-CGRP
- Fremanezumab, eptinezumab, galcanezumab block CGRP
- Erenumab blocks RAMP1/CLR and also RAMP1/CTR
- Eptinezumab peak in hours
- Ab anti-CGRP/R class switch
- Ab anti-CGRP/R and Gepants switch

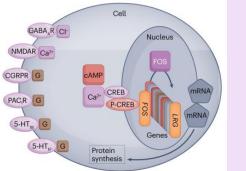
- Ab anti-CGRP/R and Onabotulintoxin A add-on
- Outcome predictors
- Use in children and adolescents
- Long-term treatment adherence and persistence
- Effect persistence after discontinuation

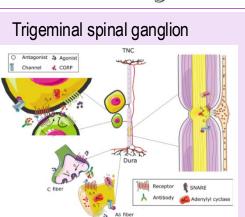
#ForumRisk19

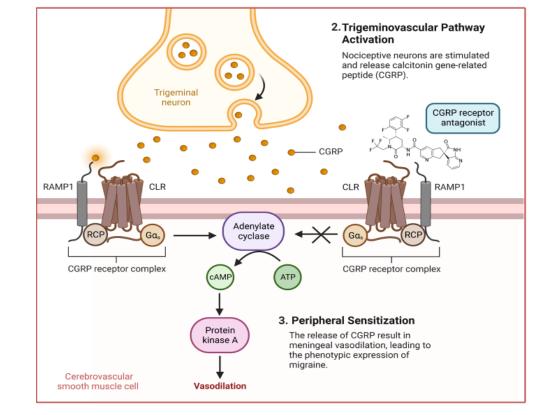

GRAZIE!

CROSSTALK BETWEEN CGRP AND AMYLIN

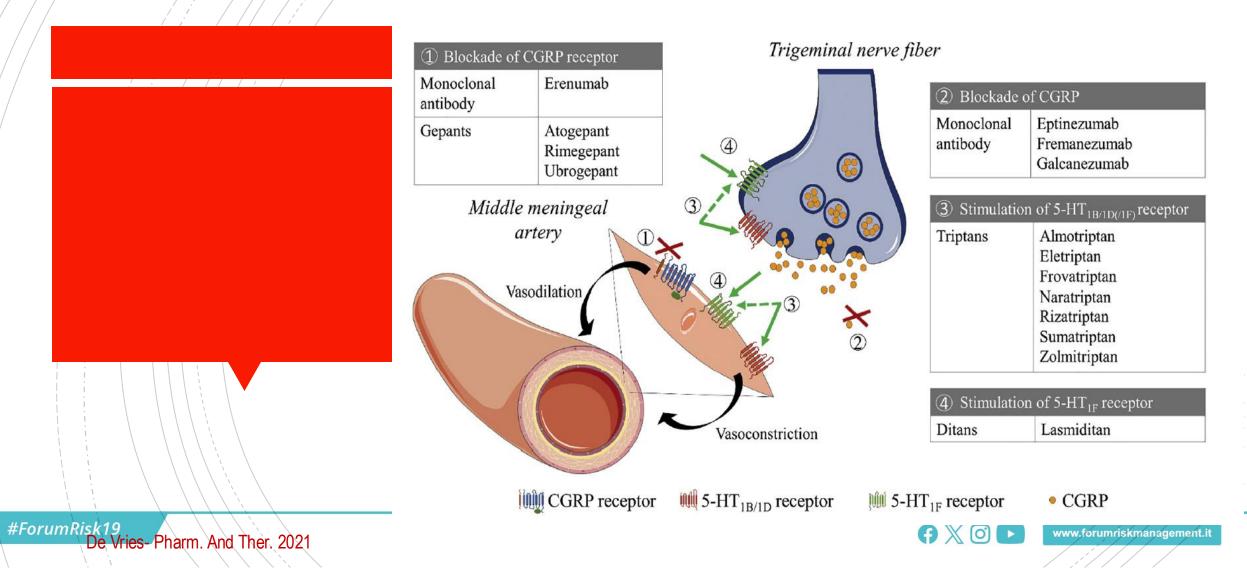



- CGRP and amylin 1 (AMY1) receptors are formed by association of either CLR or CTR with RAMP1, respectively.
- CGRP and amylin are equipotent at the AMY1 receptor, while CGRP is more potent at the canonical CGRP receptor.
- These receptors have a distinct internalization profile. Current antimigraine drugs targeting CGRP (blue boxes) and potential antimigraine amylin drugs (white boxes) are shown.

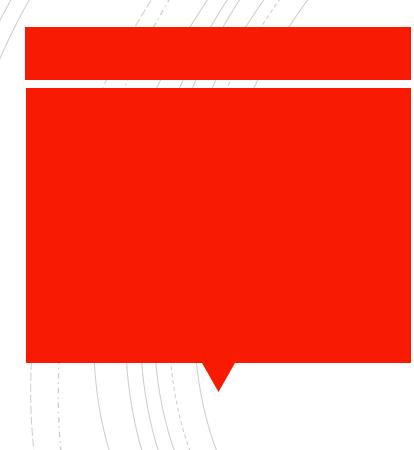

#ForumRisk19



CGRP PATHWAYS AND CGRP RECEPTOR ANTAGONISM WITHIN TRIGEMINOVASCULAR PATHWAY


ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; CLR, calcitonin receptor-like receptor; RAMP1, receptor activity-modifying protein; RCP, receptor component protein

#ForumRisk19


Edvinsson Trends In Pharmacological Sciences 2021 Mitsikostas DD Nature Rev Neurol 2023

Boinpally R Clin Transl Sci 2024 Altamura C Neurological Sciences 2022 www.forumriskmanagement.it

#ForumRisk19

CGRP INNIDILION - GEPANTS NOVEMBRE 2024

6	U	-29	NU	VEIV	DKE	2024
4	R	EZZ	O FIE	RE E	CON	GRESSI

Linda Al-Hassany Lancet Neurol 2022

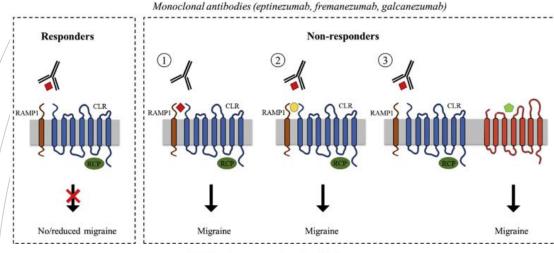
 \triangleright

	Generic drug name	Indication	Dosage and administration	T _{max}	<i>t</i> _{1/2}			
	Small molecule CGRP receptor antagonists							
	Atogepant	 Preventive treatment of migraine in adults 	10, 30, or 60 mg taken orally daily	~1-2 h	~11 h			
	Rimegepant	 Acute treatment of migraine with or without aura in adults, and Preventive treatment of episodic migraine in adults 	Acute: 75 mg taken orally, as needed; maximum 24-h dose is 75 mg preventive: 75 mg taken every other day	1.5 h	~11 h			
/	Ubrogepant	Acute treatment of migraine with or without aura in adults	50 or 100 mg taken orally, as needed; maximum 24-h dose is 200 mg	1.7 h	5–7 h			
	Zavegepant	Acute treatment of migraine with or without aura in adults	10 mg single intranasal spray taken as needed; maximum 24-h dose is 10 mg	~30 min	6.55h			
	mAb targeting the CGR	RP receptor						
	Erenumab	 Preventive treatment of migraine in adults 	70 or 140 mg monthly single dose s.c. injection	4–6 days ^a	28 days			
	mAbs targeting the CG	RP ligand						
	Eptinezumab	Preventive treatment of migraine in adults	100 or 300 mg i.v. infusion over 30 min every 3 months	End of infusion	~27 days			
	Fremanezumab	 Preventive treatment of migraine in adults 	225 mg monthly, or 675 mg every 3 months s.c. injection	5–7 days ^a	~31 days			
	Galcanezumab	Preventive treatment of migraine, andTreatment of episodic cluster headache	240 mg s.c. injection loading dose, followed by monthly doses of 120 mg	5 days ^a	27 days			

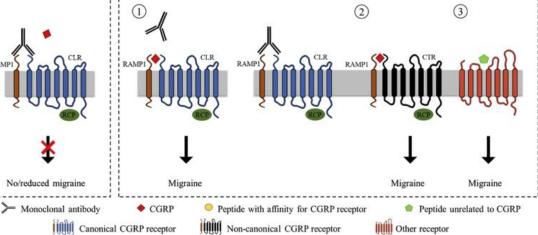
ACUTE PREVENTIVE TREATMENT TREATMENT Three gepants Two gepants \geq ubrogepant atogepant rimegepant rimegepant zavegepant

	Gepants	Anti-CGRP monoclonal antibodies
Target	CGRP receptor	CGRP receptor or ligand
Clearance	Liver, kidney	Reticuloendothelial system
Half-life	5–11 h	3-7 weeks
Size	0.5–0.6 kDa	143–146 kDa
Ability to cross blood– brain barrier	Low (1.4% CSF/plasma ratio)	No
Administration	Oral, intranasal	Parenteral
Immunogenicity	No	Yes

www.forumriskmanagement.it


#ForumRisk19

Boinpally R Clin Transl Sci 2024


Responders

26-29 NOVEMBRE 2024 AREZZO FIERE E CONGRESSI

Medication targeting CGRP

Medication targeting the CGRP receptor Monoclonal antibody (erenumab) and gepants (atogepant, rimegepant, ubrogepant)* Non-responders

In responders to <u>medications targeting CGRP</u> (eptinezumab, fremanezumab and galcanezumab), CGRP is sufficiently blocked, leading to a reduction in migraine.

In non-responders, multiple situations are possible 1) Blocking of CGRP is insufficient. 2) Blocking of CGRP is sufficient, but other peptides (e.g. amylin) can activate the CGRP receptor. 3) Blocking of CGRP is sufficient, but migraine is induced via a different pathway.

In responders to <u>medications targeting the CGRP receptor</u> (erenumab or the gepants; atogepant, rimegepant, ubrogepant, zavegepant), the receptor is sufficiently blocked. Migraine persists in non-responders. 1) **Blocking of the CGRP receptor is insufficient**. 2) Blocking of the CGRP receptor is sufficient but **CGRP can activate related receptors** (e.g. AMY1 receptor). 3) Migraine is induced **via a different pathway**

