





# Il valore delle strategie vaccinali nelle Regioni italiane

(la MANCATA vaccinazione secondo diverse ipotesi di copertura)

#### Eugenio Di Brino

Ricercatore ALTEMS, Co-founder & partner di Altems Advisory, spin-off dell'Università Cattolica del Sacro Cuore

Gruppo di Lavoro: Di Brino E., Basile M., Falasca G., Rumi F., Xoxi E., Arbia G.



### Obiettivi del programma



Quantificare il costo della «non vaccinazione», in termini di minore salute e maggiori costi nei diversi contesti regionali individuati valorizzando le implicazioni economiche e sociali dell'ampliamento delle coperture vaccinali e delle modalità così come previsto dal Piano Nazionale per la Prevenzione Vaccinale 2023-2025.

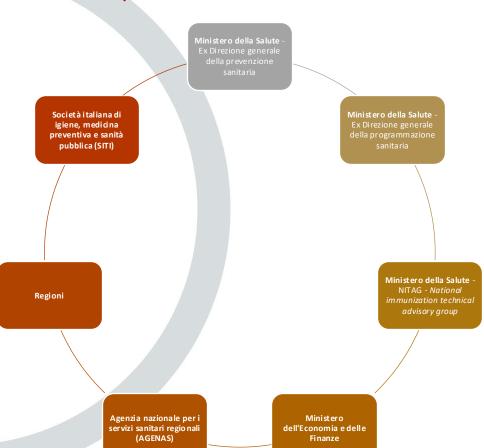
L'obiettivo è quello di calcolare il burden economico della mancata vaccinazione secondo diverse ipotesi di copertura vaccinale nelle seguenti vaccinazioni: Papillomavirus (HPV), Meningococco ACWY (MenACWY), Influenza (FLU), Pneumococco, Herpes Zoster (HZV), Covid-19.

#### Come abbiamo lavorato?



Analizzare i modelli organizzativi e le modalità operative delle attuali strategie vaccinali.




Sintetizzare le principali evidenze in merito al valore sociale ed economico delle vaccinazioni.



Quantificare il costo della «non vaccinazione», in termini di minore salute e maggiori costi

#### **Focus Group**





#### Componenti del Focus Group

- Giovanni Baglio, Direttore UOC Ricerca, PNE, Rapporti internazionali, AGENAS
- Emanuela Balocchini, Direzione Prevenzione, Regione Toscana
- Alessandra Barca. Direzione Prevenzione. Regione Lazio
- Danilo Cereda, Direzione Prevenzione, Regione Lombardia
- Americo Gochetti, Direttore Generale della Programmazione Sanitaria, Ministero della Salute
- Ida Fortino, Direzione Farmaceutica, Regione Lombardia
- Onofrio Mongelli, Direzione Prevenzione, Regione Puglia
- Fabio Pammolli, Professor of Economics, Finance and Data Science, Politecnico di Milano
- Francesca Russo, Direzione Prevenzione, Regione Veneto
- Giovanna Scroccaro, Direzione Farmaceutica, Regione Veneto
- Andrea Siddu, Ufficio 5 Prevenzione delle malatti e tras missibili e profilassi internazionale, Direzione Generale della Prevenzione, Ministero della Salute
- Carlo Signorelli, Presidente Gruppo consultivo nazionale sulle vaccinazioni (NITAG -National immunization technical advisory group)
- Roberta Siliquini, Presidente Società italiana di igiene, medicina preventiva e sanità pubblica (SITI)
- Paolo Stella, Direzione Farmaceutica, Regione Puglia
- Ugo Trama, Direzione Farmaceutica, Regione Campania
- Paolo Torrico, Direzione Acquisti di ESTAR, Regione Toscana
- Francesco Vaia, Direttore Generale della Prevenzione, Ministero della Salute

## Analisi dei modelli delle strategie vaccinali









**Elementi di valutazione economica** dei programmi
vaccinali a livello
internazionale e nazionale

# Elementi organizzativi – ultimi 10 anni di pubblicazioni



| Vaccini e scuole                              | Strategie vaccinali | Strategie vaccinali Anagrafe vaccinale |                           |  |
|-----------------------------------------------|---------------------|----------------------------------------|---------------------------|--|
| Fattori che<br>influenzano la<br>vaccinazione | MMG e vaccini       | Telemedicina<br>prescrittiva           | Farmacisti e<br>vaccini   |  |
| Operatori sanitari<br>vaccinati               | Medici e pazienti   | Percezione di<br>essere vaccinati      | Ruolo degli<br>infermieri |  |



Da dove partire per catturare l'impatto economico della mancata vaccinazione?

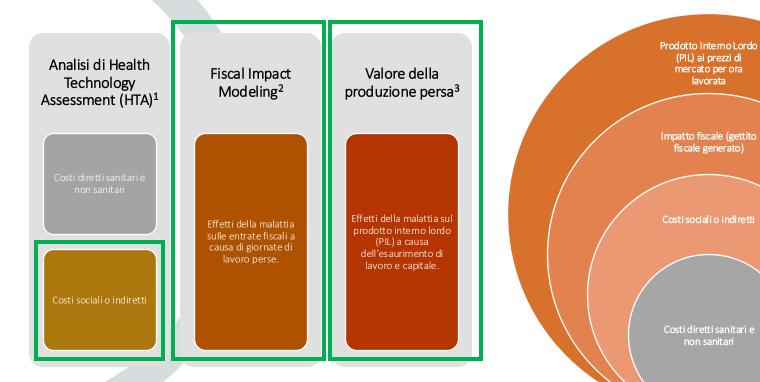
# Tipologie di studio

International Journal of Technology Assessment in Health Care

cambridge.org/thc

# Estimating the fiscal impact of three vaccination strategies in Italy

Matteo Ruggeri (o), Eugenio Di Brino (o) and Americo Cicchetti


Postgraduate School of Health Economics and Management, Università Cattolica del Sacro Cuore, Rome, Italy

| Tipologie di studio                               | Comparazione                         | Obiettivo                                                     | Ambito di applicazione                                                                     | Prospettiva                                            |  |
|---------------------------------------------------|--------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| Studi di cost of illness                          | No                                   | Economic burden                                               | Patologie                                                                                  | SSN/ SSR/<br>Bilancio dello Stato                      |  |
| Costo-efficacia/utilità dei<br>programmi sanitari | Si (benefici/ costi)                 | Allocazione delle risorse<br>pubbliche / Costo<br>opportunità | Farmaco, dispositivo, programma di<br>sanità pubblica, vaccini, procedura                  | SSN                                                    |  |
| Studi di budget impact                            | Si (costi)                           | Sostenibilità SSN                                             | Farmaco, dispositivo, programma di<br>sanità pubblica, vaccini, procedura                  | SSN/ SSR/<br>Azienda<br>Ospedaliera                    |  |
| Studi sui costi indiretti e sociali               | Si (costi)                           | Sostenibilità Spesa<br>Pubblica                               | Farmaco, dispositivo, programma di sanità pubblica, vaccini, procedura                     | SSN/ SSR/<br>Bilancio dello Stato                      |  |
| Fiscal impact Modeling                            | Si (spesa, gettito fiscale, reddito) | Sostenibilità sistema<br>economico/crescita                   | Programma di sanità pubblica,<br>vaccini, tecnologie ad alto impatto<br>di sanità pubblica | SSN/ Bilancio<br>dello Stato/<br>Economia<br>Nazionale |  |



#### Una nuova prospettiva di analisi della «mancata vaccinazione» - APPLICAZIONE PILOTA





#### F - - 4 !.

- 1. M E Drummond, M J Sculpher, G W Torrance GW, et al. Oxford University Press, 2005.
- 2. Ruggeri M, Di Brino E, Cicchetti A. Estimating the fiscal impact of three vaccination strategies in Italy. Int J Technol Assess Health Care. 2020 Apr;36(2):133-138.
- 3. Arias D, Saxena S, Verguet S. Quantifying the global burden of mental disorders and their economic value. EClinical Medicine. 2022 Sep 28;54:101675.

#### Popolazione del modello

- Il modello, rispetto alle consuete analisi economiche, prende in considerazione un ventaglio di vaccinazioni (Ministero della Salute, 2023) che corrispondono a diverse tipologie di popolazione target delle campagne (ISTAT, 2023).
- Il PNPV è affiancato dal Calendario Nazionale Vaccinale per età, nel quale si specifica per ogni tipologia di vaccinazione sia l'età che la popolazione. Partendo da questo documento, si è approfondito lo studio sulle seguenti vaccinazioni: Papillomavirus (HPV), Meningococco ACWY (MenACWY), Influenza (FLU), Pneumococco, Herpes Zoster (HZV), Covid-19 (unica vaccinazione non rientrante nel contesto del PNPV, ma è stata comunque considerata nell'analisi di questa ricerca per l'enorme impatto e il benchmark economicoorganizzativo).

| Regioni                         | Papillomavirus<br>(HPV)  | Influenza (FLU)               | Pneumococco              | He rpe s Zost er<br>(HZV) | Meningococco ACWY<br>(MenACWY) | Covid-19                      |
|---------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------|--------------------------------|-------------------------------|
| Popolazione eleggibile          | 11 anni (ISTAT,<br>2023) | Over 60 anni (ISTAT,<br>2023) | 65 anni (ISTAT,<br>2023) | 65 anni (ISTAT,<br>2023)  | 12 anni (ISTAT, 2023)          | Over 60 anni (ISTAT,<br>2023) |
| Abruzzo                         | 11.287                   | 413.021                       | 17.089                   | 17.089                    | 11.584                         | 413.021                       |
| Basilicata                      | 4.413                    | 174.248                       | 7.402                    | 7.402                     | 4.553                          | 174.248                       |
| Calabria                        | 16.945                   | 567.588                       | 25.052                   | 25.052                    | 17.379                         | 567.588                       |
| Campania                        | 56.302                   | 1.53 2.937                    | 69.340                   | 69.340                    | 57.985                         | 1.53 2.937                    |
| Emilia-Romag na                 | 40.736                   | 1.393.940                     | 56.180                   | 56.180                    | 42.034                         | 1.393.940                     |
| Friuli-Venezia Giulia           | 10.178                   | 407.717                       | 15.555                   | 15.555                    | 10.587                         | 407.717                       |
| Lazio                           | 54.347                   | 1.725.282                     | 72.218                   | 72.218                    | 55.745                         | 1.72 5.282                    |
| Liguria                         | 11.820                   | 548.563                       | 20.980                   | 20.980                    | 12.294                         | 548.563                       |
| Lombardia                       | 95.011                   | 3.003.083                     | 12 0.912                 | 120.912                   | 97.727                         | 3.003.083                     |
| Marche                          | 13.540                   | 490.025                       | 19.525                   | 19.525                    | 13.699                         | 49 0.025                      |
| Molise                          | 2.340                    | 98.547                        | 4.077                    | 4.077                     | 2.454                          | 98.547                        |
| Piemonte                        | 37.212                   | 1.425.374                     | 56.833                   | 56.833                    | 38.070                         | 1.425.374                     |
| Puglia                          | 36.004                   | 1.202.498                     | 50.973                   | 50.973                    | 37.199                         | 1.202.498                     |
| Sa rde gna                      | 13.023                   | 536.114                       | 23.172                   | 23.172                    | 13 4 38                        | 53 6.114                      |
| Sicilia                         | 45.743                   | 1.43 6.326                    | 62.555                   | 62.555                    | 47.051                         | 1.43 6.326                    |
| Toscana                         | 32.209                   | 1.217.360                     | 47.217                   | 47.217                    | 33.273                         | 1.217.360                     |
| Trentino-Alto<br>Adige/Südtirol | 11.019                   | 307.571                       | 12.951                   | 12.951                    | 11.209                         | 307.571                       |
| Umbria                          | 7.626                    | 289.890                       | 11.027                   | 11.027                    | 7.820                          | 28 9. 890                     |
| Valle D'Aosta                   | 1.209                    | 39.689                        | 1.618                    | 1.618                     | 1.163                          | 39.689                        |
| Veneto                          | 44.9.19                  | 1.51 6.586                    | 61.997                   | 61.997                    | 46.199                         | 1.516.586                     |
| Italia                          | 545.883                  | 18.326.359                    | 75 6.67 3                | 756.673                   | 561.463                        | 18.326.359                    |

#### Dati input modello (costi patologia)

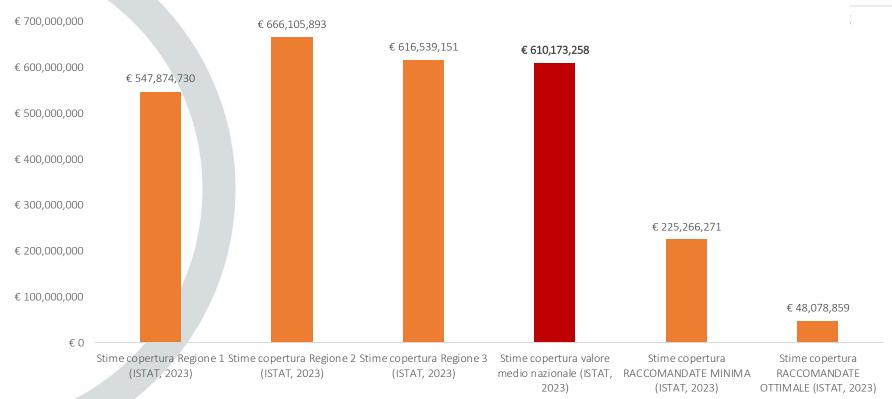


| Vaccinazione | Media settimana di malattia |  |  |
|--------------|-----------------------------|--|--|
| HPV          | 7                           |  |  |
| Influenza    | 1                           |  |  |
| Pneumococco  | 3                           |  |  |
| HZV          | 2                           |  |  |
| Covid-19     | 1                           |  |  |
| MenACWY      | 3                           |  |  |

- Salario orario lordo (media ISTAT): € 18,00
- Indennità: -33,3% salario lordo (ipotesi su dati ISTAT)
- Prodotto Interno Lordo (PIL) ai prezzi di mercato per ora lavorata: €41
- Percentuale media utilizzo caregiver formale e informale (50% popolazione)
- Percentuale malattia per i non vaccinati (50% popolazione della coorte dei non vaccinati)

L'orizzonte temporale dell'analisi è stato ricondotto a un anno, questo perché alcune vaccinazioni hanno un impatto stagionale (quindi annuale) altre invece producono benefici nel lungo periodo (es. HPV, pneumococco, HZV, meningococco).

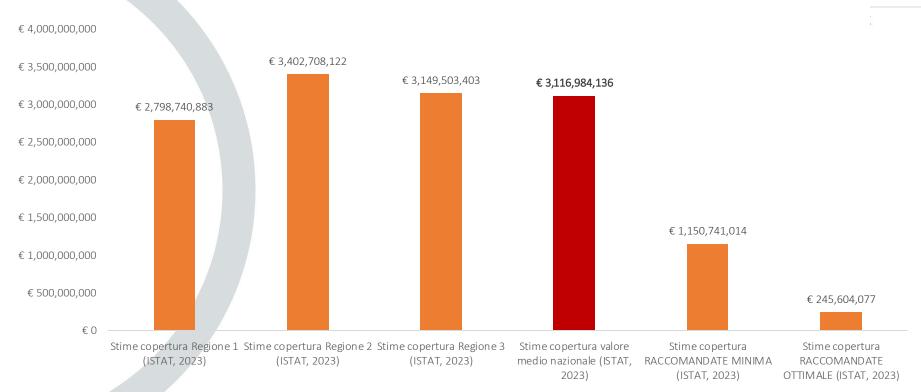
Poiché le popolazioni su cui incide il modello sono differenti tra loro, e mancando una stratificazione della popolazione che tenga conto di variabili puntuali sull'utilizzo del caregiver e sulla probabilità di infettarsi per coorti diverse, sono state inserite due proxy a supporto, con una ipotesi del 50% per entrambe le variabili, che aiutano nella stima elaborata.


## Coperture vaccinali considerate nello studio



| Coperture regionali                                | HPV    | FLU    | Pneumo | HZV    | Covid-19 | MenACWY |
|----------------------------------------------------|--------|--------|--------|--------|----------|---------|
| Copertura vaccinale Regione 1                      | 84,06% | 44,43% | 15,21% | 4,68%  | 36,00%   | 83,00%  |
| Copertura vaccinale Regione 2                      | 65,98% | 48,41% | 6,93%  | 1,48%  | 8,00%    | 64,00%  |
| Copertura vaccinale Regione 3                      | 72,55% | 48,40% | 54,30% | 48,45% | 10,00%   | 62,00%  |
| Copertura vaccinale media di riferimento nazionale | 74,20% | 47,08% | 25,48% | 18,20% | 18,00%   | 69,67%  |
| Copertura raccomandata minima                      | 95,00% | 75,00% | 75,00% | 50,00% | 75,00%   | 95,00%  |
| Copertura raccomandata ottimale                    | 95,00% | 95,00% | 95,00% | 95,00% | 95,00%   | 95,00%  |

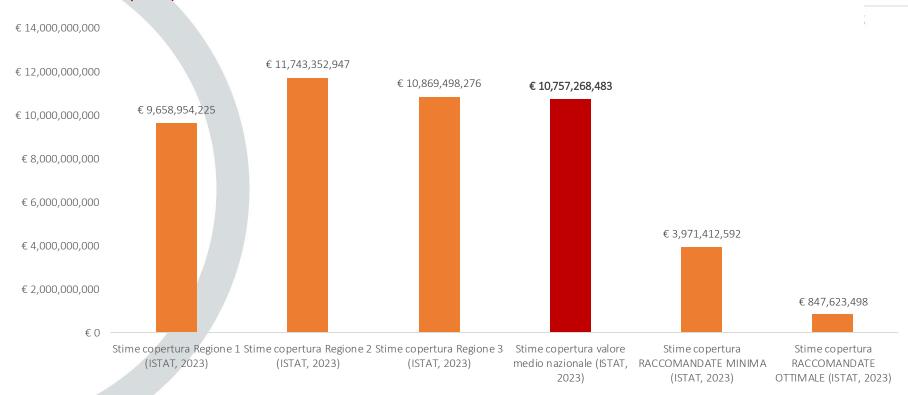
#### Fiscal Impact (Effetti della malattia sulle entrate fiscali a causa di giornate di lavoro perse)






Commento: aumentare le coperture vaccinali dall'attuale media di riferimento nazionale al livello di copertura raccomandato minimo comporterebbe un recupero di gettito fiscale pari a € 384.906.987. Questo beneficio potrebbe aumentare fino a € 562.094.399 nel caso di raggiungimento degli obiettivi di copertura ottimale.

#### Costi sociali (Effetti della malattia sulla previdenza sociale a causa di giornate di lavoro perse)






Commento: aumentare le coperture vaccinali dall'attuale media di riferimento nazionale al livello di copertura raccomandato minimo comporterebbe un abbattimento di costi sociali pari a € 1.966.243.122. Questo beneficio potrebbe aumentare fino a € 2.871.380.059 nel caso di raggiungimento degli obiettivi di copertura ottimale.

# Valore della produzione persa (Effetti della malattia sul prodotto interno lordo (PIL) a causa dell'esaurimento di lavoro e capitale)





Commento: aumentare le coperture vaccinali dall'attuale media di riferimento nazionale al livello di copertura raccomandato minimo comporterebbe un abbattimento del valore di produzione persa pari a € 6.785.855.891. Questo beneficio potrebbe aumentare fino a € 9.909.644.985 nel caso di raggiungimento degli obiettivi di copertura ottimale.

#### Limiti dello studio



- Durante la ricerca è stata approfondita l'analisi sulla popolazione fragile, così come indicato anche nelle raccomandazioni vaccinali. Tuttavia, la mancanza di dati puntuali sulla popolazione fragile (in termini di differenziazione tra diverse comorbidità e relative vaccinazioni, con effetto di duplicazione di alcune coorti di popolazione) ha reso necessario optare per questo approccio più cautelativo che non ha preso in considerazione la popolazione fragile nelle analisi che seguono.
- Questo approccio comporta una percentuale di popolazione eleggibile alle vaccinazioni minori che comporta sia una sottostima del valore delle vaccinazioni in termini di costi evitati ma anche una sottostima dei benefici della vaccinazione considerando che proprio la vaccinazione della popolazione fragile è quella più importante in termini di tutela dello stato di salute (in quanto tale popolazione è soggetta a rischio di complicazione) e di riduzione della mortalità.
- Sicuramente un altro limite di questa analisi è stata l'impossibilità di attualizzare i risultati al valore attuale in quanto i benefici derivanti sono legati a una popolazione che può avere un impatto di mortalità per varie cause e quindi difficilmente collocabile nel tempo.

#### Conclusioni



- C'è un sostanziale ed evidente bisogno di focalizzarsi sulla prevenzione, in particolare sulle campagne vaccinali, per abbassare i costi di trattamento e il tasso di mortalità.
- Vi è una forte necessità di generare evidenze farmaco-economiche che possano aiutare a pianificare programmi di vaccinazione efficaci.
- Il costo di una vaccinazione è notevolmente più basso rispetto alle spese mediche necessarie per curare le malattie che i vaccini prevengono.
- Di conseguenza, l'attuazione di programmi di vaccinazione rappresenta una strategia sanitaria estremamente efficiente e sostenibile, in grado di ridurre il carico economico sul Sistema Sanitario Nazionale, migliorare la salute pubblica e contribuire significativamente alla stabilità economica della società, particolarmente in periodi di risorse limitate e difficoltà finanziarie.
- I benefici delle vaccinazioni rientrano nella categoria delle esternalità positive: dell'effetto delle vaccinazioni, infatti, beneficiano tutti coloro che potrebbero subire il contagio e che non sostengono alcuna spesa per questo beneficio.
- È sempre più evidente come la spesa legata alla sanità sia un investimento e non un costo per il Paese, e che la vaccinazione debba essere considerata come un investimento necessario al fine di ottenere vantaggi dal punto di vista della salute della popolazione ed in temini economici.

#### Disclosure



Questo lavoro è stato reso possibile grazie al supporto non condizionante di Farmindustria





# Grazie per l'attenzione

eugenio.dibrino@unicatt.it

#### Eugenio Di Brino

Ricercatore Alta Scuola di Economia e Management dei Sistemi Sanitari Università Cattolica del Sacro Cuore

